GRSR - a guideline for reporting studies results for machine learning applied to Electroencephalogram data
نویسندگان
چکیده
Background: The last decade was marked by increased neuroscience research involving machine Learning (ML) and medical images such as functional magnetic resonance electroencephalogram (EEG). There are many challenges in this field, including the need for more data a standard presenting results. Since ML models tend to be sensitive input data, different strategies acquisition, preprocessing, feature selection, validation significantly impact results achieved. Therefore, significant variation while makes it challenging compare Results: This work aims tackle lack of model guideline, conform Quadas-2, that covers most critical studies demonstrate when using EEG addressing neurological disorders. Conclusions: guideline allows structural presentation primary applied EEG, improving comparison between also allowing fair comparisons.
منابع مشابه
a new approach to credibility premium for zero-inflated poisson models for panel data
هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...
15 صفحه اولMachine Learning Models for Housing Prices Forecasting using Registration Data
This article has been compiled to identify the best model of housing price forecasting using machine learning methods with maximum accuracy and minimum error. Five important machine learning algorithms are used to predict housing prices, including Nearest Neighbor Regression Algorithm (KNNR), Support Vector Regression Algorithm (SVR), Random Forest Regression Algorithm (RFR), Extreme Gradient B...
متن کاملApplied Data Science: Using Machine Learning for Alarm Verification
In this project we are working with a security company that is a mayor player in secure alarm transmission. Alarms can be triggered by devices installed at banks, jewelry stores, private homes, etc. As already stated initially, around 90% of alarms are so-called false alarms and are due to technical reasons or unwanted human error. The challenge of our project is to significantly reduce the amo...
متن کاملA Hybrid Machine Learning Method for Intrusion Detection
Data security is an important area of concern for every computer system owner. An intrusion detection system is a device or software application that monitors a network or systems for malicious activity or policy violations. Already various techniques of artificial intelligence have been used for intrusion detection. The main challenge in this area is the running speed of the available implemen...
متن کاملA Machine Learning Approach to No-Reference Objective Video Quality Assessment for High Definition Resources
The video quality assessment must be adapted to the human visual system, which is why researchers have performed subjective viewing experiments in order to obtain the conditions of encoding of video systems to provide the best quality to the user. The objective of this study is to assess the video quality using image features extraction without using reference video. RMSE values and processing ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Revista Brasileira de Computação Aplicada
سال: 2023
ISSN: ['2176-6649']
DOI: https://doi.org/10.5335/rbca.v15i2.14338